Earth-Like Planets

The search for an Earth analogue is heating up. And although we may have to wait for the James Webb Space Telescope to see another Earth, indirect methods are bringing us closer and closer to finding an Earth-like exoplanet every month. These findings are also bringing us closer to estimating the number of Earth-like planets in the Milky Way (e.g., study 12).

The latest research, and for some the most exciting, was the discovery of Kepler-62e. Kepler-62e is a planet located approximately 1,200 light years away from Earth in the Kepler-62 star system. This system is composed of a smaller and cooler star than our Sun, and is accompanied by five known planets, two of which are rocky worlds in the stars habitable zone.


From the limited data available to astronomers at this point in the detection process, Kepler-62e has been touted as the “most Earth-like” planet known to date. In fact, by utilizing the Earth Similarity Index (ESI) equation Kepler-62e scores a 0.82 (scale: 0-1.0). That score matches the unconfirmed exoplanet candidate Gliese 581 g (Figure 1).


Figure 1 – Current Potential Habitable Exoplanets

ESI is calculated using data on the mean radius, bulk density, escape velocity, and surface temperature of an exoplanet. In the popular science media a high ESI (~0.80-1.00) is code for “Earth-sized planet within the habitable zone.” In essence that is what everyone means when they say “Earth-like.” But a growing number of scientists, myself included, are beginning to realize that we are getting way ahead of ourselves. At the moment we have no way of understanding an exoplanet’s geophysical history, present state, or the dynamics of the entire star system. Astronomer Phil Plait recently tempered enthusiasm re: Kepler-62e by stating there are too many unknowns to call it Earth-like yet:

Kepler-62e could have a thick CO2-laden blanket of air, making its surface temperature completely uninhabitable, like Venus. Or it might not. We just don’t know yet, and won’t for quite some time.

In short, more data on Kepler-62e could radically alter its ESI number from 0.82 to 0.44! And that is not even factoring in data on how a radically different solar system would affect Kepler-62e’s development and present state.

This frequent, and perhaps cavalier, use of the term “Earth-like” has caused some astronomers concern. Astrobiologist Caleb Scharf recently forced us to consider what is meant by “Earth-like” when used in the context of exoplanet discovery:

Utterance of [Earth-like] can evoke all sorts of images. It may make us think of oceans, beaches, mountains, deserts, forests, fluffy clouds, fluffy bunnies, warm summers, snowy winters, the local pub, or the fabulous hubbub of the local souk. But this is typically far from the meaning attached by scientists. It can simply indicate a planet with a rocky surface, rather than a world with a thick gaseous envelope. It can mean a world that is roughly the same mass and density as Earth. It can mean a planet orbiting a star like the Sun. Or it can just mean that we got bored of saying things like ‘a two-Earth mass object in a close to a circular orbit around a roughly 4 billion year old main-sequence star that is similar in mass to the Sun’.

For me, Scharf adequately articulates the complexity in this galactic search. He also reminds me that we still must be humbled by what we can’t know at this point in time. Our estimates on the number of Earth-like worlds are going to be in constant flux this century because our data will be imperfect. All we need to do is remind ourselves of Earth’s history to know our current data are insufficient to label an exoplanet “Earth-like”. Despite the fact that our planet’s orbit and size have been relatively static, it has gone through phases (and will go through future phases) that we would consider inhospitable.

On a final note, we must also remember that our planet has the current temperature, chemical composition, and general climate it does because of the biosphere. Life, as far as we know, creates an “Earth-like” world. So perhaps, moving forward, the term “Earth-like” should be reserved for planets that we can tell are operating in a Gaia-like way. By that I mean that we should only call a planet Earth-like if the light elements (e.g., carbon, nitrogen, sulphur, and nitrogen) are being dominated and controlled by biology.

What do you think about our search for another Earth?  Let Cadell know on Twitter!

Also posted via Svbtle:

Related Advanced Apes content:

Intelligent Life in the Milky Way

Another Earth

Life on Europa


About Cadell Last
Hello. I'm probably drinking coffee and reading.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: